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Procedures to define boundary conditions for Navier-Stokes 
equations are discussed. A new formulation using characteristic wave 
relations through boundaries is derived for the Euler equations 
and generalized to the Navier-Stokes equations. The emphasis is on 
deriving boundary conditions compatible with modern non-dissipative 
algorithms used for direct simulations of turbulent flows. These 
methods have very low dispersion errors and require precise boundary 
conditions to avoid numerical instabilities and to control spurious wave 
reflections at the computational boundaries. The present formulation is 
an attempt to provide such conditions. Reflecting and non-reflecting 
boundary condition treatments are presented. Examples of practical 
implementations for inlet and outlet boundaries as well as slip and 
no-slip walls are presented. The method applies to subsonic and 
supersonic flows. It is compared with a reference method based 
on extrapolation and partial use of Riemann invariants. Test cases 
described include a ducted shear layer, vortices propagating through 
boundaries, and Poiseuille flow. Although no mathematical proof of 
well-posedness is given, the method uses the correct number of 
boundary conditions required for well-posedness of the Navier-Stokes 
equations and the examples reveal that it provides a significant 
improvement over the reference method. 0 1992 Academic Press, Inc. 
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1. INTRODUCTION 

Direct simulations of Navier-Stokes equations have been 
the focus of many recent studies. In the field of finite dif- 
ference methods, modern algorithms based on high-order 
schemes can provide spectral-like resolution and very low 
numerical dissipation (Thompson [l], Lele [a]). The 
precision and the potential applications of these schemes, 
however, are constrained by the boundary conditions which 
have to be included in the final numerical models. Most 
direct simulations are performed with periodic boundary 
conditions. In these configurations, the reference frame 
moves at the mean flow speed and flow periodicity is 
assumed. This is the only geometry for which the problem 
can be closed exactly at the boundary: by assuming 
periodicity, the computation domain is folded on itself 
and no boundary conditions are actually required. The 
periodicity assumption considerably limits the possible 
applications of these simulations. Simulations in which no 
periodicity is assumed and flow inlets and outlets must be 
treated are much less common. Indeed, these simulations 
are strongly dependent on boundary conditions and on 
their treatment and general boundary conditions for direct 
simulations of compressible flows are needed. The new 
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constraints imposed on boundary condition formulations 
by these unsteady computations performed with high-order 
numerical methods in non-periodic domains are the 
following: 

l Direct simulation of compressible flows requires an 
accurate control of wave reflections from the boundaries of 
the computational domain. This is not the case when 
Navier-Stokes codes are used only to compute steady 
states. In these situations waves have to be eliminated and 
one is not interested in the behavior of boundaries as long 
as a final steady state can be obtained. It is worth noting 
that the mechanisms by which waves (especially acoustic 
waves) are eliminated in many codes is somewhat unclear 
and very often due to numerical dissipation. As direct 
simulation algorithms strive to minimize numerical 
viscosity, acoustic waves have to be eliminated by another 
mechanism such as better non-reflecting or absorbing 
boundary conditions. 

l A large amount of experimental evidence suggests that 
acoustic waves are strongly coupled to many mechanisms 
encountered in turbulent flows. The initial instability as well 
as the growth of non-reacting shear layers are sensitive to 
acoustic waves (Bechert and Stahl [203). This interaction 
may even lead to large flow instabilities as, for example, in 
the case of the edgetone experiment (Ho and Nosseir [21], 
Tang and Rockwell [22]). In the field of reacting flows, 
combustion instabilities provide numerous examples of 
interactions between turbulent combustion and acoustic 
waves (Yu et al. [S], Poinsot et al. [4], Poinsot and Candel 
[23], Sterling and Zukoski [S]). The simulation of these 
phenomena requires an accurate control of the behavior of 
the computation boundaries. Many studies have been con- 
cerned with direct simulation of combustion instabilities 
(Menon and Jou [6], Kailasanath et al. [7]) but the iden- 
tification of the acoustical behavior of boundaries is not 
explicit and its effects on the results are unclear. The 
problem of the downstream boundary is often removed by 
considering supersonic outlets where all variables are 
obtained by extrapolation. Even in cases where physical 
waves are not able to propagate upstream from the outlet, 
numerical waves may do so and interact with the flow. For 
example, recent studies show that strong numerical 
coupling mechanisms between inlet and outlet boundaries 
can lead to non-physical oscillations for the one-dimensional 
advection equation (Vishnevetsky and Pariser [30]). 

l Although exact boundary conditions ensuring well- 
posedness can be derived for Euler equations (Kreiss [S], 
Higdon [9], Engquist and Majda [lo], Gustafsson and 
Oliger [ 11 I), the problem is much more complex for 
Navier-Stokes equations. Determining if a given set of 
boundary conditions applied to Navier-Stokes equations 
will lead to a well-posed problem can only be assessed in 
certain simple cases (Gustafsson and Sundstriim [12], 

Oliger and Sundstriim [ZS]). Although the recent work of 
P. Dutt [29] gives a general method to check the well- 
posedness of Navier-Stokes equations and some examples 
of implementations, it covers only a small part of the 
practical questions related to this problem. The existence of 
acoustic waves crossing the boundaries, for example, is not 
considered. 

l Discretization and implementation of boundary condi- 
tions require more than the knowledge of the conditions 
ensuring well-posedness of the original Navier-Stokes 
equations. Other conditions have to be added to the original 
set of boundary conditions to solve for variables which are 
not specified by the boundary conditions. These additional 
conditions are often called “numerical” boundary condi- 
tions although they should be viewed only as compatibility 
relations required by the numerical method and not as 
boundary conditions. The computational results depend 
not only on the original equations and the boundary 
conditions but also on the numerical scheme and on the 
numerical conditions used at the boundaries. 

The objective of this paper is to use recent theoretical 
results on well-posedness of Navier-Stokes boundary con- 
ditions to construct a systematic method for specifying these 
boundary conditions. This method has been derived using 
the following criteria: 

(1) It reduces to Euler boundary conditions when the 
viscous terms vanish. The method presented here is an 
extension of recent methods developed for hyperbolic 
equations (Thompson [ 11) and is valid for Euler and 
Navier-Stokes equations. It allows control of the different 
waves which cross the boundaries. 

(2) It does not use any extrapolation procedure, 
thereby suppressing the arbitrariness in the construction of 
the boundary conditions. 

(3) The number of boundary conditions specified for 
Navier-Stokes equations is that obtained by theoretical 
analysis of well-posedness (Strikwerda [33], Dutt [29]). 

The method presented here is certainly not the only solu- 
tion for boundary conditions for Navier-Stokes equations, 
Other modern methods to specify boundary conditions may 
be found, for example, in Dutt [29], Rudy [39], Lowery 
et al. [40], or Grinstein et al. [26]. The limitations of 
our approach, suggested by theoretical considerations 
or evidenced through practical applications, will also be 
described. However, test results and comparisons with other 
methods support this formulation and show its precision 
and robustness. The present method was originally derived 
for direct simulations of turbulent reacting flows and a com- 
plete description of the method for such flows may be found 
in Poinsot and Lele [38]. 

Section 2 will describe the theory behind the method and 
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its implementation for Euler and Navier-Stokes equations. 
Section 3 will provide examples of implementation for dif- 
ferent boundary conditions (subsonic inflow and outflow, 
non-reflecting boundaries, slip wall, no-slip wall). Section 4 
will concentrate on some test results for stationary flows. 
Section 5 will give examples of applications for unsteady 
flows. Finally, Section 6 will provide examples of viscous 
flow computations at low Reynolds number (Poiseuille 
flow). 

2. DESCRIPTION OF CHARACTERISTIC BOUNDARY 
CONDITIONS FOR NAVIER-STOKES EQUATIONS 

2.1. Theory of the Method 

An appealing technique for specifying boundary condi- 
tions for hyperbolic systems is to use relations based on 
characteristic lines, i.e., on the analysis of the different waves 
crossing the boundary. This method has been extensively 
studied for the Euler equations [l, 2, 8, 9, lo]. The objec- 
tives of this work are to construct such a method for the 
Euler equations and then to extend this analysis to the 
Navier-Stokes equations. Although our main concern is 
direct simulation of turbulent flows, the method is also well 
suited to low Reynolds number flows. Such a method will be 
called Navier-Stokes characteristic boundary conditions 
(NSCBC) (although it is clear that the concept of “charac- 
teristic lines” may be questionable for the Navier-Stokes 
equations). The NSCBC method is valid for Navier-Stokes 
and Euler equations and relaxes smoothly from one to the 
other when the viscosity goes to zero. 

The reader is referred to the papers of Kreiss [S] or 
Engquist and Majda [9] for a description of the mathe- 
matical background of boundary conditions based on 
characteristic wave analysis. Different levels of complexity 
may be incorporated in these methods. For example, some 
of the variables on the boundaries can be extrapolated while 
some others are obtained from a partial set of characteristic 
relations (Rudy and Strikwerda [14, 151, Grinstein et al. 
[26], Yee [ 171). However, it seems reasonable to avoid any 
kind of extrapolation (Moretti [ 161). We will describe how 
this can be done first for the Euler equations (Section 2.4) 
and emphasize modifications required for the Navier- 
Stokes equations (Section 2.5). The following presentation 
is focused on explicit finite difference algorithms but can be 
easily extended to other numerical methods (e.g., finite 
elements, implicit finite differences, etc.). 

Before describing the method we must introduce some 
terminology. Boundary condition treatments may be very 
different and some confusion between the nature of the con- 
ditions (physical vs numerical) is found in the literature. 
Two classes of boundary conditions may be distinguished: 

TABLE I 

Number of Physical Boundary Conditions Required for 
Well-Posedness (Three-Dimensional Flow) 

Boundary type Euler Navier-Stokes 

Supersonic inflow 
Subsonic inflow 
Supersonic outflow 
Subsonic outflow 

5 5 
4 5 
0 4 
1 4 

(1) We will call a boundary condition a physical 
boundary condition when it specifies the known physical 
behavior of one or more of the dependent variables at 
the boundaries. For example, specification of the inlet 
longitudinal velocity on a boundary is a physical boundary 
condition. These conditions are independent of the 
numerical method used to solve the relevant equations. We 
expect the number of necessary and sufficient physical 
boundary conditions to be that suggested by theoretical 
analysis (Oliger and Sundstrom [28], Dutt [29], 
Strikwerda [32]), as summarized in Table I for a 
three-dimensional flow. To build Navier-Stokes boundary 
conditions, the approach used in the NSCBC method is to 
take conditions corresponding to Euler conditions (the 
inviscid conditions) and to supply additional relations (the 
“viscous” conditions) which refer to viscous or diffusion 
effects. The term “viscous” is used here to describe all 
processes which are specific to Navier-Stokes, i.e., viscous 
dissipation and thermal diffusion. For example, a three 
dimensional viscous subsonic outflow requires four 
“physical” boundary conditions (Strikwerda [ 321): one 
of them will be the inviscid relation obtained for Euler 
equations and it will be complemented by three “viscous” 
conditions. We will see (Section 2.5) that the NSCBC 
procedure follows Strikwerda’s results in all cases except 
two: the subsonic inlet with imposed temperature and 
velocities and the supersonic outlet. 

(2) Knowing which physical boundary conditions to 
impose is not enough to solve the problem numerically. 
When the number of physical boundary conditions is less 
than the number of primitive variables (this is always the 
case at an outflow), how can we find the variables which are 
not specified? The usual method is to introduce “soft” (or 
“numerical”) conditions. We will consider a boundary con- 
dition to be “soft” when no explicit boundary condition 
fixes one of the dependent variables, but the numerical 
implementation requires us to specify something about this 
variable. Soft boundary conditions have often been called 
“numerical” boundary conditions because they appear to be 
needed for the numerical method while not being explicitly 
given by the physics of the problem (Yee [ 173). The 
methods to treat soft conditions can be divided into two 
groups: 
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l Arbitrary conditions may be added to the physical 
boundary conditions to obtain the missing dependent 
variables on the boundary. Many authors use extrapolation 
for variables which are not imposed by one of the physical 
boundary conditions. For example, fixing the velocity and 
the temperature at the inlet of a one-dimensional duct for 
an inviscid flow computations comprises two “physical” 
boundary conditions which require a “soft” boundary 
condition for the inlet pressure if the flow is subsonic. 
Extrapolation of pressure using pressure values at interior 
points may be used (Grinstein et al. [26], Yee [17]), but 
the compatibility of these methods with the original set of 
physical boundary conditions is unclear. Extrapolation 
acts as an additional physical condition imposing a zero 
pressure gradient and therefore overspecifies the boundary 
conditions. 

l A more rigorous method is to use the conservation 
equations themselves on the boundary to complement the 
set of physical boundary conditions. It is the approach used 
in the present work. Variables which are not imposed by 
physical boundary conditions are computed on the 
boundaries by solving the same conservation equations as 
in the domain. In the previous example of a one-dimensional 
subsonic inlet, pressure will be found in the NSCBC method 
by using the energy conservation equation on the boundary 
itself. 

Four difficulties are associated with the NSCBC 
approach for soft boundary conditions: 

(1) Near the boundaries, the accuracy of the spatial 
derivatives has to be decreased. Typically, centered differen- 
ces have to be replaced by one-sided differences because grid 
points are available only on the interior side of the 
boundary. Theoretical approaches (Gustafsson [ 37 J) and 
tests (Lele [2]) indicate that this is not a major difficulty. If 
the order of approximation near the boundary is equal to 
the scheme order minus one, the overall accuracy of the 
scheme is not affected. 

(2) At the boundaries, some of the waves are propa- 
gating from the outside of the domain to the inside. These 
waves require a specific treatment as quoted here from 
Thompson [ 1 ] for the Euler equations: 

Hyperbolic systems of equations represent the propagation of waves, 
and at any boundary some of the waves are propagating into the 
computational volume while others are propagating out of it. The 
outward propagating waves have their behavior defined entirely by 
the solution at and within the boundary, and no boundary condi- 
tions can be specified for them. The inward propagating waves 
depend on the solution exterior to the model volume and therefore 
require boundary conditions to complete the specification of their 
behavior. 

As a result, the incoming waves must not be evaluated on 
the computation grid inside the domain but obtained 
through another procedure. Note that this condition can 
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also be interpreted in terms of numerical evaluation of 
spatial derivatives. Most numerical schemes are stable 
for upwind differencing and unstable for downwind 
differencing. In the present procedure, outgoing waves 
are computed using one-sided and therefore upwind 
differencing. However, estimating ingoing waves with the 
same procedure would require downwind differencing of 
these waves and should be avoided to ensure stability. 

(3) If we cannot estimate the amplitude of incoming 
waves with our differencing scheme, how do we obtain these 
quantities? This paper shows that all incoming wave 
amplitudes at a given boundary can be estimated from the 
original choice of the physical boundary conditions 
imposed on this boundary and can be expressed in terms of 
the outgoing wave amplitudes (which we can compute with 
a one-sided scheme). This procedure gives us the missing 
terms in the conservation equations and allows us to 
advance in time all the variables which are not fixed by 
physical boundary conditions. An additional advantage of 
this method is that it allows us to identify the different waves 
crossing the boundary. For example, in case of radiation 
into a uniform medium, specifying non-reflecting boundary 
conditions can be done in a very precise way by adjusting 
the amplitude of the incoming waves to zero. 

(4) Now a basic theoretical problem is that, for 
Navier-Stokes equations, we do not know the exact form of 
these waves. It is well known that the Navier-Stokes equa- 
tions are not hyperbolic as the addition of viscous terms 
(even minute) changes the mathematical nature of the 
system by increasing its order (Gustafsson and Sundstrom 
[ 121). However, Navier-Stokes equations certainly propa- 
gate waves like Euler equations do and, from a physical 
point of view, Euler boundary conditions appear as lirst- 
order candidates to treat Navier-Stokes boundary condi- 
tions. The first logical approximation is therefore to suppose 
that waves for Navier-Stokes equations are associated only 
with the hyperbolic part of the Navier-Stokes equations. In 
other words, we will identify these waves by the same proce- 
dure as for Euler equations and neglect waves associated 
with the diffusion processes. Most direct simulations 
are performed for high Reynolds numbers where this 
approximation is probably well justified. Using this charac- 
teristic concept to treat Navier-Stokes equations for any 
Reynolds number presents another important assumption 
whose mathematical justification may be questionable. We 
will, however, present evidence of its validity by computing 
a very viscous flow in Section 6. 

2.2. The Inviscid Characteristic Analysis Applied to the 
Navier-Stokes Equations 

We will consider here a compressible viscous flow 
and derive boundary conditions for the associated 
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Navier-Stokes equations. The fluid dynamics equations, in 
Cartesian coordinates, are (with summation convention) 
[13]: 

~+-$(mi)=Ol 
I 

where 

P pE=;pu,u,+- 
y-l’ 

mi = pui, 

Tii=p 

J ‘2 

/1 
ComDutafion 
domiin 

/ 

i: 

F f, 04 

f, (0) 

f, (u) 

Here, p is the thermodynamic pressure, mi is the xi direc- 
tion momentum density, pE is the total energy density 
(kinetic + thermal). The heat flux along x,, namely qi, is 
given by 

qi= -A$ 
I 

(7) 

The thermal conductivity 2 is obtained from the viscosity 
coefficient p according to 

(4) 
FIG. 1. Waves leaving and entering the computational domain 

through an inlet plane (x, = 0) and an outlet plane (x1 = L) for a subsonic 
flow. 

(5) 

(6) 
~+u,d,+pd,+~(m,u,)+~(m,u3) 

2 3 

where P, is the Prandtl number. 
Let us consider now a boundary located at x, = L 

(Fig. 1). Using the characteristic analysis Cl] to modify the 
hyperbolic terms of Eqs. (l)-(3) corresponding to waves 

azli -? 3 
OXj 

am2 
r;+u2d,+pd4+~(m2U2)+~(m,u3)+~ 

2 3 2 

arzi =- 
axj ' 

am3 ~+u3d,+pd,+-&(m3u,)+~(m3u3)+~ 
2 3 3 

az3j =- 
axj . 

(11) 

(13) 

propagating in the x1 direction, we can recast this system as: 

ap 
~+d,+$(m,)+$(m3) 

2 3 

= 0, (9) 

%$+; (ukujc) d, + 
4 

d= 
-+m,d,+m,d,+m,d, 
Y-l 

+$ C(PE+ PI u21+; C(PE+ P) ~31 
2 3 

(10) 

The different terms of the system of Eqs. (9 t( 13) contain 
derivatives normal to the x1 boundary (d, to de), derivatives 
parallel to the x, boundary like (a/ax,)(m,u,) and local 
viscous terms. The vector d is given by characteristic 
analysis (Thompson [ 1 ] ) and can be expressed as 
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where the 5$‘s are the amplitudes of characteristic waves 
associated with each characteristic velocity Ai. These 
velocities are given by [ 11: 

I, = u1 -c, 

I, = & = 1, = UI) 

1, = u1+ c, 

where c is the speed of sound: 

(15) 

(16) 

(17) 

&yP 
P’ (18) 

I, and As are the velocities of sound waves moving in the 
negative and positive xi directions; I, is the convection 
velocity (the speed at which entropy waves will travel) while 
;1, and 1, are the velocities at which u2 and uj are advected 
in the x1 direction. 

The z.‘s are given by: 

(19) 

(20) 

(21) 

(22) 

A simple physical interpretation of the g’s can be given 
by looking, for example, at the linearized Navier-Stokes 
equations for one-dimensional inviscid acoustic waves. Let 
us consider the upstream-propagating wave associated to 
the velocity 1, = u, - c. If p’ and u’ are the pressure and 
velocity perturbations, the wave amplitude A, = p’ - pcu’ is 
conserved along the characteristic line x + A1 t = const so 
that 

%$+j.,$-!=O or %+gR,=O. 
1 

At a given location, ( - Zi) represents the time variation 
of the wave amplitude A i . By analogy, we will call the z’s 
the amplitude variations of the characteristic waves crossing 
the boundary. This relation between the z’s and the 
amplitude of waves crossing the boundaries is the major 
advantage of casting the conservation equations into the 
form (9t( 13). The characteristic analysis does not require 

the original set of conservation equations (l)-(3) be trans- 
formed to the characteristic form (9t(13). However, Eqs. 
(9)-( 13) are expressed in terms of wave amplitude varia- 
tions and constitute more meaningful expressions to derive 
boundary conditions. Again, note that viscous terms have 
not been included in the expressions of the q.‘s. As indicated 
in Section 2.1, we approximate the wave amplitudes in the 
viscous case by their inviscid expressions. 

Let us now come back to the principle of the NSCBC 
method: we want to advance the solution in time on the 
boundaries by using the system of Eqs. (9)-( 13). In this 
system, most quantities can be estimated using interior 
points and values at previous time steps. In the present 
code, third-order one-sided space derivatives were used and 
tests show that the overall accuracy (formally fourth- or 
sixth-order) of the scheme becomes fourth order. In any 
case, this error is much smaller than the errors introduced 
by approximate boundary conditions (like extrapolation, 
for example). Parallel terms of the type (8/8x2)(pu2) are 
obtained on the boundaries with the same approximation as 
in the interior, since they do not involve any derivatives nor- 
mal to the boundary. The only quantities which require a 
more careful approach are the di’s which are functions of the 
amplitude variations z. As explained in Section 2.1, the 
g’s corresponding to information propagating from the 
inside of the domain to the outside, may be calculated using 
one-sided differences. 

Finally, we see that the system of Eqs. (9)-( 13) can be 
used to give values of variables on the boundary at the 
following time step if we can estimate the amplitude varia- 
tion g’s of waves propagating into the domain. 

We have now to distinguish two different types of 
problems: (1) those where some information is known 
about the outside domain so that the z’s of the incoming 
waves can be determined and (2) those where such informa- 
tion is not available: 

(1) In some problems, an asymptotic solution may be 
used to describe the solution between the boundary and 
infinity. For example, the self-similar solution for a shear- 
layer can provide satisfactory estimates of all gradients at 
the outlet of the computation domain. The incoming q’s 
may be estimated from these gradients using Eqs. (19) to 
(24). A very precise method to impose boundary conditions 
for problems of type (1) is therefore to specify the amplitude 
variations of the incoming waves. This notion is suggested 
by Thompson [ 1 ] and is similar to the idea of incorporating 
“natural” reflections on boundaries proposed by Hagstrom 
and Hariharan [36]. However, such formulations for 
boundary conditions impose only values for derivatives and 
no constraint for the mean values (for example, the mean 
pressure). Using only these exact values for the incoming 
waves may lead to a drift of the mean quantities. We will see 
in Section 3.2 how this problem is solved. 
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(2) In most cases, however, no information of this type 
is available and exact values of the incoming waves 
amplitude variations cannot be obtained. It is this problem 
which is dealt with in this paper. Clearly, some approxima- 
tion for the incoming wave amplitude variations has to be 
obtained. A systematic method to provide estimates of these 
amplitude variations will be described now. This method is 
valid for Euler and Navier-Stokes equations and differs 
notably from most previous methods using characteristic 
concepts (even for Euler equations) such as those proposed 
by Thompson [1] or Moretti [16]. 

2.3. The Local One-Dimensional Inviscid (LODI) Relations 

We have already indicated that there was no exact simple 
method to specify the values of g’s of the incoming waves 
for multidimensional Navier-Stokes equations. However, 
this can be done for one-dimensional Euler equations. 

The approach used in the NSCBC technique is to infer 
values for the wave amplitude variations in the viscous multi- 
dimensional case by examining a local associated one-dimen- 
sional inviscid (LODI) problem. 

At each point on the boundary we can obtain such a 
LODI system by considering the system of Eqs. (9)-(13) 
and neglecting transverse and viscous terms. The resulting 
equations are easy to interpret and allow us to infer values 
for the wave amplitude variations by considering the flow 
locally as inviscid and one-dimensional. The relations 
obtained by this method are not “physical” conditions but 
should be viewed as compatibility relations between the 
choices made for the physical boundary conditions and the 
amplitudes of waves crossing the boundary. 

The LODI system can be cast in many different forms 
depending on the choice of variables [l]. In terms of the 
primitive variables, this LODI system is 

au, i 
~+2pcwd%)=o, 

(28) 

The previous relations may be combined to express 
the time derivatives of all other quantities of interest. For 
example, in certain problems one might wish to express 

the time derivatives of the temperature T, the flow rate 
m, = pu,, the entropy s, or the stagnation enthalpy h : 

aT T 
-+i at pc -z2+;(P-l)(~+zJ =o, 1 

(29) 
am, 1 z+; &Y~+&G1)Pi+(.‘+l)%) 

[ 1 =O, 

(30) 

a.9 1 
at-(y-1)pT 

92 = 0, 

h+ 1 
at (Y-1)~ 

(31) 

X 

[ 
-Lg+y {(l-Jz)%+(l+“JY)&} =o, 1 

(32) 

where h = (pE + p)/p = $uf + C, T and s = C, log p/pY + 
const. C, and C, are the specific heat capacities at constant 
pressure and volume, respectively. &? is the local Mach 
number: & = ur /c. 

Other forms of LODI relations may be useful when 
boundary conditions are imposed in terms of gradients. All 
gradients normal to the boundary may be expressed as 
functions of the g’s [ 1 ] : 

ap 1 92 1 25 91 

-=- ax, 2 I U,+Z ( - u,+c+u,-c - >I 7 
ap 1 q -4pl -=- - - 
axI 2 ( u,+c+u,-c ’ > 

(33) 

(34) 

(35) 
au, 1 dips % -=- ~_- 
ax, ( 2pc u,+c > u1-c ’ 

8T T 
-:+&J-l) 95 =% -=- 

ax, pc2 -+- 241 +c . (36) 2.4, -c 

Most physical boundary conditions have a counterpart 
LODI relation. For example, imposing a constant entropy 
on some boundary requires setting gz = 0 to satisfy 
Eq. (31). Imposing a constant inlet pressure should be 
accompanied (from Eq. (25)) by setting & = - Zi to fix the 
amplitude variation of the wave 9; entering the domain. 

Values obtained for the wave amplitude variations 
through LODI relations will be approximate because the 
complete Navier-Stokes equations involve viscous and 
parallel terms. Let us recall, however, that the boundary 
variables will be time advanced using the system of 
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equations (9)-( 13) and that viscous and parallel terms will 
effectively be taken into account at this stage. The LODI 
relations are used only to estimate the incoming wave 
amplitude variations. Some approximation at this level can 
be tolerated as long as our choice is compatible with the 
physics of the physical boundary conditions which we 
imposed.’ 

2.4. The NSCBC Strategy for the Euler Equations 

We will first describe the NSCBC strategy for the Euler 
equations. The extension to Navier-Stokes is presented in 
the next section. The procedure involves three steps. The 
case of a subsonic outlet boundary where pressure is 
specified is used as an example to illustrate the method. Let 
us consider a given boundary: 

Step 1. For each inviscid physical boundary condition 
imposed on this boundary, eliminate the corresponding 
conservation equations from the system of Eqs. (9)-( 13). In 
the example of a constant pressure outlet, p is specified and 
there is no need to use the energy equation (10). 

The choice of the conservation equation to eliminate is 
straightforward in most practical cases. Table II provides 
examples of such choices. 

Step 2. For each inviscid boundary condition, use the 
corresponding LODI relation to express the unknown 
q’s (corresponding to incoming waves) as a function of 
the known z.‘s (corresponding to outgoing waves). For 
example, for a constant outlet pressure, the only incoming 
wave is 2, (Fig. 1) and LODI relation (25) suggests that 

is a physically meaningful choice. (It will be an exact choice 
if the inlet is located far from the vertical regions of the 
flow.) P’S is the amplitude variation of the wave travelling at 
the velocity 1, = u1 + c and leaving the domain through the 
outlet (Fig. 1). According to our conventions, it may be 
computed from interior points and one-sided derivatives. 2, 
is the amplitude variation of the acoustic wave entering the 

’ As indicated, we will note use LODI relations to compute new values 
at boundaries but only to obtain relations on the y’s which will be used 
afterwards in the system of conservation equations (9H 13). Using LODI 
relations alone may also provide a simple but approximate method to 
derive boundary conditions. For example, the assumption of non-reflection 
for an outlet is equivalent to imposing 55, =O. Combining Eqs. (25) and 
(26) to eliminate &, we can derive the well-known relation 

(37) 

which has been used by many authors to build non-reflecting conditions 
(HedstrGm [18], Bayliss and Turkel [19], Rudy and Strikwerda [14]) 
and is the first approximation of Engquist and Majda [9]. 

TABLE II 

Conservation Equation to Eliminate for a Given Inviscid 
Boundary Condition (Examples) 

Inviscid condition Equation to eliminate 

u1 velocity imposed X, Momentum Eq. (11) 
u2 velocity imposed xz Momentum Eq. (12) 
u) velocity imposed x3 Momentum Eq. (13) 
m, flow rate imposed X, Momentum Eq. (1 I ) 
Pressure imposed Energy Eq. (10) 
Density imposed Continuity Eq. (9) 
Enthalpy imposed Energy Eq. (10) 
Entropy imposed Energy Eq. (10) 

domain through the outlet at a velocity i, = u1 -c. It will 
not be estimated using any mesh point values but simply 
given by Eq. (38). 

Step 3. Use the remaining conservation equations of 
the system of Eqs. (9)-( 13) combined with the values of the 
z’s obtained from Step 2 to compute all variables which 
were not given by the inviscid boundary conditions. (As we 
solve Euler equations here, the viscosity P is set to zero in 
the system of Eqs. (9~(13).) In the case of a constant 
pressure outlet, the density and the velocities will be 
obtained through the corresponding conservation equa- 
tions ((9), (ll)-(13)), where Eq. (38) has been used to 
evaluate the incoming wave amplitude variation gl. 

Step 2 is the key part of the NSCBC method. Using the 
conservation equations written on the boundary as well as 
some reasonable information on the amplitude of incoming 
waves (suggested by the LODI relations) removes the 
ambiguity of having to choose some arbitrary “numerical” 
condition. Note that the time advancement of Step 3 
includes parallel terms to obtain the solution at the next 
time step. The complete set of Eqs. (9)-(13) with LODI 
relations like (38) would not satisfy the physical boundary 
conditions which we have imposed. Step 1 is necessary to 
discard equations in the system of Eqs. (9)-( 13) which are 
replaced by inviscid boundary conditions. 

2.5. The NSCBC Strategy for the Navier-Stokes Equations 

Navier-Stokes equations require more boundary condi- 
tions than Euler equations do. In the NSCBC method, com- 
plete Navier-Stokes boundary conditions are obtained by 
using Euler inviscid boundary conditions and supple- 
menting them with additional viscous conditions. These 
additional conditions must have a negligible effect when 
the viscosity goes to zero and their implementation is not 
done at the same level as the inviscid conditions. In the 
NSCBC procedure, viscous conditions are applied only 



112 POINSOT AND LELE 

during Step 3 by specifying those viscous conditions are not 
strictly enforced by the NSCBC approach. They are only 
used to modify the conservation equations which are used in 
Step 3 to compute boundary variables which have not been 
specified by inviscid conditions. Steps 1 and 2 are the same 
for Euler and Navier-Stokes. 

We have not indicated yet how to choose the viscous 
conditions. The compatibility of inviscid conditions with 
viscous conditions is not automatically ensured. Most 
Navier-Stokes codes actually use physical boundary condi- 
tions derived for the Euler equations. In particular, the 
number of physical conditions imposed on a given 
boundary is often chosen as if the flow were inviscid by 
arguing that the boundaries are far enough from the regions 
where viscous effects are important. As a consequence, only 
inviscid conditions are applied and no viscous conditions 
are introduced. 

In the NSCBC method, the number and the choices of 
physical boundary conditions (inviscid and viscous) were 
guided using the theoretical studies of Strikwerda [32] and 
Oliger and Sundstrom [28]. However, the agreement 
between these studies and our own results is not complete 
as we will see later. Tables III and IV summarize the 
different physical conditions used in the NSCBC method for 
a three-dimensional flow and compare the number of these 
conditions with the number suggested by Strikwerda [32] 
and Oliger and Sundstrom [28] to ensure well-posedness. 
Table III corresponds to inlet and Table IV to walls and 
outlets. Only subsonic flows are considered here. The case of 
Euler equations is also displayed in the left column of each 
table to allow comparison with Navier-Stokes. The 
following facts are apparent: 

l For inflow, we have listed four possibilities in Table III. 
The first column indicates whether a proof of well-posed- 
ness has been given for this set of conditions. The last 
column gives the theoretical number of conditions required 
for well-posedness (Strikwerda [ 321) and compares it with 
the number of conditions effectively used in the NSCBC 
method. For case SI 1, where ui, u2, u3, and Tare imposed, 
our method differs from the analysis of Strikwerda [32]. 
Only four conditions are used in the NSCBC method while 
Strikwerda claims that live conditions should be used. 
Indeed, imposing u1 , u2, us, and T is a special case because 
the only remaining unknown is the density p. p can be 
obtained through the continuity equation which does not 
involve any viscous term and does not require any 
additional condition, thereby leaving the total number 
of boundary conditions at four. In more general cases, 
however, we have found that live conditions are necessary 
as suggested by Strikwerda. For example, condition SI 2 
(imposing u,, u2, uj, and p) is well posed for Euler equa- 
tions (Oliger and Sundstrom [28]) and an additional 
viscous condition is provided in the NSCBC method for the 

TABLE III 

Physical Boundary Conditions for Three-Dimensional Flows for 
Euler and Navier-Stokes Equations 

Elder N&e-Stokes 

Inviscid Inviscid Viscous Number of BC 
conditions Number conditions + conditions used in NSCBC 

4 + 0 =4? 

Sl 1 u, imposed 4 u1 imposed Special case: 
No well-posed- u2 imposed u2 imposed Euler and NS 

ness proof for u1 imposed u1 imposed need same 
Euler or NS T imposed T imposed conditions 

4 + 1 =5 

s12 
Well-posed 

for Euler. 
No proof for 

NS [32] 

u , imposed 4 ah u, imposed -=0 
uz imposed u2 imposed ax, 

u) imposed u) imposed 
p imposed p imposed 

4 + 1 =5 

Sl 3 u,-2c/(y-1) 4 u1 - W(Y - 1) 2=0 Didnot 
Well posed imposed imposed I work 

for Euler uz imposed uz imposed (Unstable) 
and NS [32] u) imposed u1 imposed 

s imposed s imposed 

4 + 1 =5 

s14 2!*=0 4 Ic;=o cp) 
Non reflecting. 9, = 0 Y,=O / 

No proof for z4 = 0 Ya=O 
Euler and NS ‘$=o g=o 

Note. Subsonic inflow. The boundary is located at x1 =0 (see Fig. 1). 
The theoretical number of boundary conditions required for well-posed- 
ness is 4 for Euler and 5 for Navier-Stokes (from [32]). 

Navier-Stokes equations. This condition states that the 
normal stress is constant along the normal to the boundary 
and is close to the proposal of Dutt [29]. Imposing such 
viscous conditions on the viscous stresses makes more 
physical sense than trying to impose relations such as 
~(&,/a~,) = 0 [28]. It is fair to say that only small effects 
are caused by these viscous conditions for inlets (this is not 
true for outlets). Most tests presented in this study have 
been performed with inflow conditions SI 1. Condition SI 2 
gives similar results to SI 1. 

l Condition SI 3 is the only one for which a well-posed- 
ness proof for Navier-Stokes has been given (Oliger and 
Sundstriim [28]). However, it is difficult to find a com- 
patible soft condition for this case. ST 4 is the non-reflecting 
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TABLE IV 

Boundary Conditions for Three-Dimensional Flows for Euler and 
Navier-Stokes Equations 

Euler Navier Stokes 

Inviscid Inviscid Viscous Number of BC 
conditions Number conditions 

+ 
conditions NSCBC theory 

1 + 3 =4 

Subsonic Pat inlinity 1 P at infinity 

non-reflecting is imposed is imposed 

outflow 

1 + 3 =4 

Subsonic Pimposed 1 P imposed 2 = 0 
, 

reflecting 

Isothermal 
no-slip wall 

4 + 0 =4 

u, =o 

UI = 0 

u,=o 
T= cte 

1 + 3 =4 

Adiabatic u,=o I “, =o r,,=O r,,=O 

slip wall 4, =o 

Adiabatic 

no-slip wall 

3 + 1 =4 

u, =o 41 =o 
u,=o 
u,=o 

Note. Subsonic outflow and walls. The boundary is located at x, = L 
(see Fig. 1). The theoretical number of boundary conditions required for 
well-posedness is 1 for Euler and 4 for Navier-Stokes. 

inlet treatment used for the NSCBC method. For the 
inviscid case, it only fixes relations on the wave amplitude 
variations. It is rather interesting to note that conditions 
SI 3 and SI 4 are equivalent for one-dimensional cases: they 
both express the conservation of entropy and the non-reflec- 
tion of acoustic waves at the inlet section (this can be easily 
deduced from the LODI relations of Section 2.3). However, 
the principle of their implementation is quite different: SI 3 
tries to enforce relations between primitive variables while 
SI 4 only fixes the waves amplitude variations through the 
boundary. For multidimensional flows, the implementation 

of SI 4 using NSCBC is straightforward, but no satisfactory 
method could be found for SI 3. 

l Outflow conditions are listed in Table IV. For non- 
reflecting subsonic outflow, one physical condition is 
needed for Euler equations but it has a specific form. This 
condition states that the pressure is imposed at infinity so 
that waves reflected from infinity towards the computation 
domain should have a zero amplitude. We will describe this 
case in more detail in Section 3.2. For the Navier-Stokes 
equations, three other conditions have to be added as 
suggested by Strikwerda [32]. We have tested many dif- 
ferent combinations and the best choice appears to be quite 
close to the proposal of Dutt [29]: we impose that the 
tangential viscous stresses (ri2 and ri3 for a boundary at 
x1 = L) as well as the normal heat flux (ql = -1(8T/&,) 
through the boundary have zero spatial derivatives with 
respect to x1 (arIJ8x, = arlJ8x, = 0 and dq,/ax, = 0). 
These conditions relax smoothly to the inviscid conditions 
when the viscosity and the conductivity go to zero. They are 
implemented numerically by simple setting the derivatives 
along xl of z12, t13, and q, to zero on the boundary in the 
system of Eqs. (9)-(13). (This does not mean that the 
tangential viscous stresses or the normal heat flux are zero.) 

As seen from Tables III and IV, the NSCBC method uses 
the right number of boundary conditions for Navier-Stokes 
equations for subsonic inflows, outflows, and walls (except 
for case SI 1) suggested by the studies of well-posedness 
[32]. This is also true for supersonic inflows where all 
variables are imposed in the NSCBC method and no 
viscous condition is used. This yields live boundary condi- 
tions as suggested in [32]. However, for supersonic 
ouflows, the NSCBC method uses three physical boundary 
conditions (no inviscid condition and three viscous condi- 
tions) so that it relaxes smoothly to the inviscid case when 
the viscosity goes to zero (for which no condition should be 
applied because the flow is supersonic) while Strikwerda 
[32] claims that four conditions should be applied. We 
have no explanation for this difference. 

2.6. The Treatment of Edges and Corners 

The treatment of corners in two-dimensional situations 
and of edges and corners in three-dimensional situations 
requires a simple extension of the NSCBC procedure. For 
edges, a second direction (for example, x2) has to be treated 
using characteristic relations. Terms of the type a/ax, on the 
left-hand side of the system of Eqs. (9)( 13) are replaced by 
characteristic waves amplitude variations estimated for the 
x2 direction. A second LODI system, relative to the x2 
direction, has to be used to infer the values of the different 
waves along x2. The viscous terms are simply corrected for 
viscous conditions and added as for the usual boundaries. 
The extension to corners in three dimensions is straight- 



114 POINSOT AND LELE 

forward although relatively cumbersome to implement. Our 
own experience indicates that these edge and corner 
treatments are necessary when a centered interior scheme 
(with low dissipation) is used. 

Like any other formulation, the NSCBC approach for 
edges and corners requires some compatibility conditions to 
be satisfied at these locations. For example, the corner 
between a no-slip wall and a constant pressure outlet should 
have a variable pressure (which is the only floating variable 
on a no-slip wall). This is not compatible with the outlet 
specification where the pressure is imposed. Imposing the 
pressure as well as all other variables at the corner seems a 
possible solution but it does not work. A solution (used in 
Section 6) is to obtain the pressure at the corner through a 
NSCBC corner treatment. At steady state, this pressure 
reaches the outlet pressure, but during the time dependent 
evolution, it allows smooth transients. A general definition 
of possible combinations of boundary conditions for edges 
and corners remains to be given and appears to be even 
more difficult than the usual studies of well-posedness. 

3. EXAMPLES OF IMPLEMENTATION 

Although all recent methods developed for Euler 
boundary conditions emphasize the importance of charac- 
teristic lines, many differences appear in the practical 
implementation of the characteristic relations and the 
choice of soft conditions, especially in multi-dimensional 
flows. The situation is even more complex for Navier- 
Stokes cases. It is therefore necessary to go now into more 
detail by presenting the practical implementation of the 
NSCBC method in the following typical situations: 

3.1. A subsonic inflow 
3.2. A subsonic non-reflecting outflow 
3.3. A subsonic reflecting outflow 
3.4. An isothermal no-slip wall 
3.5. An adiabatic slip wall 
3.6. An adiabatic no-slip wall. 

The geometry is given in Fig. 1 where the section xi = 0 
corresponds to the inlet and xi = L to the outlet boundaries. 
The problem of non-reflecting boundaries will be given 
more attention as it raises certain additional difficulties. 
Supersonic cases will not be discussed here because they are 
usually simpler than subsonic cases. 

3.1. A Subsonic Inflow 

Many “physical” boundary conditions exist for subsonic 
inflow conditions. We have chosen to describe a case where 
all components of velocity u,, u2, and u3 as well as the 
temperature T are imposed (Case SI 1 in Table IV). These 

quantities can change with time and are functions of the 
spatial location in the inlet plane x, = 0: 

u,(O, x2, x3> t) = w,, x3, f) 
u,(O, x2, x3,1) = T/(x,, x3, t) 
u,(O, x2, x3, t) = W(x,, x3, f) 
T(O, x2, x3, t) = P2, x3, t). 

This case is typical of direct simulations of turbulent flows 
where we wish to control the inlet shear and introduce flow 
perturbations. For a subsonic three-dimensional flow, four 
characteristic waves are entering the domain (Fig. I), Y2, 
Y3, PA, and Y5, while one of them (Pi) is leaving the 
domain at the speed 2, = ui - c. Therefore, the density p (or 
the pressure p) has to be determined by the flow itself. We 
have four physical boundary conditions (for ui , u2, u3, and 
T) and one soft boundary condition (for p). No viscous 
relation is needed for this case. To advance the solution in 
time on the boundary, we need to determine the amplitudes 
z of the different waves crossing the boundary. Only one of 
these waves (3;) may be computed from interior points. 
The others are given by the NSCBC procedure, as follows: 

Step 1. The inlet velocities U, , u2, and u3 are imposed, 
therefore Eqs. (11) (12), and (13) are not needed. The inlet 
temperature is imposed and the energy equation (10) is not 
needed any more. 

Step 2. As the inlet velocity ui is imposed, the LODI 
relation (26) suggests the following expression for Pi : 

As the inlet temperature is imposed, the LODI relation 
(29) gives an estimate of the entropy wave amplitude Z2 : 

LODI relations (27) and (28) show that T3 = -dV/dt and 
Y4 = - d W/dt. 

Step 3. The density p can now 
Eq. (91, 

be obtained by using 

dP %+d, +& (Pu2 )=O, (9) 
2 

where d, is given by Eq. (14): 
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LZ’~ is computed from interior points using Eq. (19). -!Z$ and 
L?‘~ have been determined at Step 2. In this case, LZ~ and LZY 
are not needed. 

3.2. A Subsonic Non-reflecting Outflow 

Using non-reflecting boundary conditions for Navier- 
Stokes equations is very appealing but requires some 
caution. The first point to emphasize is that building a 
perfectly non-reflecting condition might not lead to a well- 
posed problem. Suppose that we want to compute a free 
shear layer by using the inlet boundary conditions described 
in the previous section, i.e., by imposing the inlet velocities 
and the temperature. If we build “perfectly non-reflecting” 
boundary conditions for the three other sides of our 
domain, we should wonder how the flow will determine 
what the mean pressure will be. Physically, this information 
is conveyed by waves reflecting on regions far from the com- 
putation domain where some static pressure pm is specified 
and propagating back from the outside of the domain to the 
inside through the boundaries. With perfect boundary con- 
ditions this information will never be fed back into the com- 
putation and the problem might be ill-posed. This problem 
has been recognized by some authors and solutions have 
been proposed (Rudy and Strikwerda [ 14, 151, Keller and 
Givoli [34], Hagstrom and Hariharan [36]). Corrections 
may be added to the treatment of boundary conditions 
to make them only partially non-reflecting. This is the 
principle of the treatment proposed in the NSCBC 
approach. 

domain while one of them LZ’i is entering it at the speed A1 = 
ui - c. Specifying one inviscid boundary condition for the 
primitive variables would generate reflected waves. For 
example, imposing the static pressure at the outlet p = pm 
leads to a well-posed problem (Oliger and Sundstrom [ 28 ] ) 
which will, however, create acoustic wave reflections. 
Avoiding reflections apparently forces us to use only “soft” 
boundary conditions. But as indicated above, we want to 
add some physical information on the mean static pressure 
px to our set of boundary conditions so that the problem 
remains well-posed. After the waves have left the computa- 
tional domain, we except the pressure at every point of the 
outlet to be close to pm. An appealing but expensive way to 
do that would be to match the solution on the boundary 
with some analytical solution between the boundary and 
infinity. We have chosen a simpler method requiring only a 
small modification to the basic NSCBC procedure: 

Step 1. We have one special physical boundary condi- 
tion: the pressure at infinity is imposed. This condition does 
not fix any of the dependent variables on the boundary 
and we keep all conservation equations in the system of 
Eqs. (9)-( 13). 

Step 2. The condition of constant pressure at infinity is 
now used to obtain the amplitude variation of the ingoing 
wave 2, : if the outlet pressure is not close to pa, reflected 
waves will enter the domain through the outlet to bring the 
mean pressure back to a value close to pm. A simple way to 
ensure well-posedness is to set 

It is also important to realize that one-dimensional and 
multi-dimensional flows are quite different as far as non- 
reflecting boundary conditions are concerned. Extending 
boundary conditions derived and tested in one-dimensional 
situations to multi-dimensional cases requires substantial 
modifications to take into account the transverse terms at the 
boundaries. Different tests (not presented here) indicate that 
perfectly non-reflecting boundary conditions for Euler 
equations may provide well-posed formulations in one- 
dimensional cases and ill-posed formulations in most two- 
dimensional situations. This fact has been observed also by 
Bayliss and Turkel [ 191. The NSCBC method allows 
a non-reflecting treatment for boundaries which is exact 
for one-dimensional problems and remains well-posed for 
multi-dimensional problems. However, in the multi-dimen- 
sional case, the non-reflecting treatment is not exact in the 
sense that waves which do not reach the boundary at a 
normal incidence are not perfectly transmitted. For these 
waves, the NSCBC treatment leads to small levels of 
reflection but still prevents numerical oscillations and 
ensures well-posedness. 

%=K(P-P,), (40) 

where K is a constant: K= a( 1 -4’) c/L. & is the maxi- 
mum Mach number in the flow, L is a characteristic size of 
the domain, and (T is a constant. The form of the constant K 
is the one proposed by Rudy and Strikwerda [14] who 
derived a similar correction but applied it only in the energy 
equation (see Section 4.1). When c = 0, Eq. (40) sets the 
amplitude of reflected waves to 0. This is the method used by 
Thompson [ 1 ] and we will call it “perfectly non-reflecting.” 

Some problems are simple enough to allow the deter- 
mination (through asymptotic methods, for example) of an 
exact value LYqXac’ of 2,. Then Eq. (40) should be written: 

9, = K(p - p,) + ,qXact. 

The second term will ensure an accurate matching of 
derivatives between both sides of the boundary while the 
first term will keep the mean values around pm. In practice, 
we have found that in most problems, Eq. (40) can be used 
directly without an additional term. 

Considering a subsonic outlet where we want to imple- If we are considering a viscous flow, the viscous condi- 
ment non-reflecting boundary conditions (Fig. l), we see tions (Table IV) require that the tangential stresses r12 and 
that four characteristic waves, &, Y;, Tdq, and 6ps leave the z 13 and the normal heat flux q 1 have zero spatial derivatives 
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along xi. Let us recall that the conditions on the tangential 
stresses and the heat flux are implemented directly in the 
system of Eqs. (9)-j 13) by setting their derivatives along the 
normal to the boundary to zero. 

Step 3. All the z’s with i # 1 may be estimated from 
interior points. Ti is given by Eq. (40) and the system of 
Eqs. (9)-(13) may be used to advance the solution in time 
on the boundary. 

3.3. A Subsonic Rejlecting Outflow 

For certain cases, for example, to study coupling 
mechanisms between longitudinal acoustic waves and 
vortex shedding in a shear layer, enforcing an exact 
reflection of waves at the boundary may be of interest. 
Imposing an inviscid condition at an outlet (constant 
pressure or constant velocity, for example) will induce wave 
reflections. This is done here for the case of an imposed 
outlet static pressure (p(L, x2, x3, t) = P(x,, xj, t)): 

Step 1. As the pressure at the outlet is imposed, 
Eq. (10) is not needed any more. 

Step 2. LODI relation (25) suggests that the amplitude 
of the reflected wave should be 

According to Table IV, we also impose constant tangential 
stresses and a constant normal heat flux through the 
boundary if we solve the Navier-Stokes equations. 

Step 3. All the g’s with i# 1 may be estimated from 
interior points. Y1 is then obtained through the relation 
given in Step 2 and Eqs. (9), (1 1 )-( 13) are used to obtain p, 
Ul, u23 and u3 on the boundary at the next time step. 

3.4. An Isothermal No-Slip Wall 

At an isothermal no-slip wall, all velocity components 
vanish and the temperature is an imposed function of time 
and space location. We have four inviscid boundary condi- 
tions for this case (u,(L, x2, -x3, t) = u,(L, x2, xg, t) = 
u,(L, x2, x3, t) = 0 and T(L, x2, xj, t) = 7(x,, x3, t)) and 
no viscous relation: 

Step 1. As velocities u,, us, and u3 are fixed, Eq. (1 1 ), 
(12), and (13) are not needed. As the temperature is 
imposed, the energy equation (10) is also discarded. 

Step 2. LODI relation (26) suggests that the amplitude 
of the reflected wave should be 6pl= Zs. The characteristic 
amplitudes Z2, g3, and YZ are zero because the normal 
velocity u1 is zero. 

Step 3. Computing the value of gs from interior points, 
we set 9, = =!& and compute the density p from integration 
of Eq. (9). 

Note that moving or vibrating no-slip walls may be 
implemented by simply keeping time dependent velocities in 
the LODI relations (26)-(28). 

3.5. An Adiabatic Slip Wall 

Slip walls are useful boundary conditions in some com- 
putations. They are characterized by only one inviscid 
condition: the normal velocity at the wall is zero 
(u,(L, x2, x3, t) = 0). The viscous relations (Table IV) 
correspond to zero tangential stresses and a zero heat flux 
through the wall. As the normal velocity is zero, the 
amplitudes gZ, -rZ;, and Yd are zero (from Eqs. (20)-(22)). 
One wave JX~ is leaving the computation domain through 
the wall while a reflected wave 2, is entering the domain: 

Step 1. The velocity u1 normal to the wall is zero and 
Eq. (11) is not needed. 

Step 2. LODI relation (26) suggests that the amplitude 
of the reflected wave should be: Z1 = Y5. 

Step 3. zZ~ is computed from interior points and Y1 is 
set to gs. The derivatives along x, of the tangential viscous 
stresses ri2, r13 and of the normal heat flux q1 at the wall are 
computed using the viscous conditions at the wall: q, = 0, 
ri2 = rr3 = 0. Remaining variables (p, u2, uj, and T) are 
obtained by integration of Eqs. (9k(lO) and (12)-( 13). 

3.6. An Adiabatic No-Slip Wall 

At an adiabatic no-slip wall, all velocity components 
vanish and the heat flux is zero. We have only three inviscid 
physical conditions (ur(L, x2, x3, t) = u,(L, x2, x3, t) = 0). 
They are complemented by one viscous conditions: the heat 
flux through the wall q, is zero: 

Step 1. As velocities ui , u2, and u3 are fixed, Eqs. ( 1 1 ), 
( 12), and (13) are not needed. 

Step 2. LODI relations (26), (27), and (28) show that 
Yi = Z5 and Y3 = Yd = 0. The characteristic amplitudes Y;, 
&, and pd are zero because the normal velocity is zero. 

Step 3. Computing the value of gs from interior points, 
we set Z1 to Y; in the system of Eqs. (9)-(13). Viscous 
conditions are implemented as in the previous section: the 
condition q1 = 0 is used during the estimation of 8q1/ax1 
at the wall. The density is then obtained from integration 
of Eq. (9), the total energy from Eq. (10). 

4. APPLICATIONS TO STEADY FLOWS 

All tests of the NSCBC method are described in Poinsot 
and Lele [ 381 and are summarized in Table V. We will only 
give some examples here: a ducted shear layer (Section 4), a 
vortex leaving the computation domain through a non- 
reflecting outlet (Section 5), and a Poiseuille flow (Sec- 
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TABLE V 

The Test Configurations for the NSCBC Method 

TYPO 
and Grid 

Schematac Specdicatlons for boundary 
conditions 

2D 
Steady 

state 

41 x 41 

Lateral slip walls 
Imposed mlei veloc111es 
and temperature. Reflec+ng 
or non refletilng outlet. 

Non reflectmg 
baundanes on sides and 

2D 
Steady 

state 
121 x81 

No-slip lateral walls. Non 
rellectmg outlet. Imposed inlet 
velocities and temperature 
(arbitrary profiles) 

tion 6). Cases described in this paper are two-dimensional. 
Additional tests for non-reacting free shear layers, steady, 
and unsteady reacting flows and acoustic wave transmission 
through non-reflecting boundaries may be found in [38]. 

The first case is a steady laminar shear layer. Although all 
computations presented are time-dependent, steady-state 
solutions are used here as a test case for the consistency of 
the method. This test is a difficult one for many codes 
because it reveals the weaknesses of the boundary condition 
treatments. Buell and Huerre [24] show, for example, that 
direct simulation codes for incompressible flows may 
generate self-sustained oscillations in shear layers because 
of a numerical coupling mechanism between the outlet and 
the inlet of the domain. Vortices leaving the computation 
domain introduce inlet perturbations which create other 
vortices. This feedback may force the shear layer to oscillate 
in a self sustained mode which is non-physical. We will show 
that similar coupling mechanisms can be due to high 
frequency numerical instabilities generated by boundary 
reflections and interactions with inlet conditions, as shown 
by Vichnevetsky and Pariser [30] and Vichnevetsky [313. 

As we are interested first in the stability and convergence 
of the method used to treat the boundaries, we will consider 
only domains with small streamwise dimensions in order to 
provide fast convergence to steady state. Our first goal is to 
demonstrate the influence of the boundary conditions on 

the stability and the consistency of the solution. The 
configuration is described in Fig. 2. The finite difference 
algorithm is third-order accurate in time and sixth-order 
in space. It uses an explicit Runge-Kutta time advancement. 
A complete description of this code is given in Lele [2]. 

We have used the NSCBC method for inlets and walls in 
all tests. These boundaries are not as critical as outlets for 
which we have compared the NSCBC method with another 
method. Lateral boundaries (x2 = -1 and x2 = E) are slip- 
walls (Fig. 2b). Using slip walls allows us to concentrate on 
the shear region without having to resolve the boundary 
layers on the lower and upper walls. The conditions at the 
inlet section (x, = 0) are the following: the temperature is 
constant (T= Ti”), the transverse velocity u2 is set to zero 
and the axial velocity u, is imposed using a hyperbolic 
tangent profile (Fig. 2a): 

u1(0,x2, l)=---- ~ u,+u, Udbtanh 2 
2 + 2 ( > 29 ’ (41) 

where U, and U2 are the far field velocities on each side of 
the shear layer and 0 is the inlet momentum thickness. Inlet 
pressure and density are obtained through the NSCBC 
procedure described in Section 3.1. 

The initial conditions consist of setting at every location 
x1 of the flow the same velocity and temperature profiles as 
the ones chosen for the inlet section. 

Four different sets of boundary conditions for the outlet 
section (x1 = L) are tested for the ducted shear layer: 

Bl. Condition Bl is the reference method which will be 
used in this paper to evaluate the NSCBC method. It has 
been proposed by Rudy and Strikwerda [ 14, 151 and is 
based on partial use of extrapolation and Riemann 
invariants. Values of u,, u2, and p are extrapolated at the 

Axial velocity 

a b 

FIG. 2. Configuration for two-dimensional tests of boundary condi- 
tions for non-reacting flows: (a) inlet velocity profile; (b) slip-walls. 
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outlet (zeroth-order extrapolation is used). The pressure is 
obtained from the non-reflecting condition: 

where the term K(p - p,) is similar to the correction term 
introduced in the NSCBC formulation in Section 3.2: 
K= a’( 1 - A’) c/L. By studying analytically the behavior 
of Eq. (42) for a linearized constant coefficient one-dimen- 
sional system of equations, Rudy and Strikwerda [14] 
derived an optimal value for 0’ around 0.27. However, their 
tests [14, 151 show that a value of 0.58 provides the best 
results in practice. The main differences between this 
approach and the NSCBC method are the use of extrapola- 
tion and the introduction of a corrective term K(p - p,) in 
the energy equation for the reference method while the 
NSCBC method does not use any extrapolation and 
introduces a correction on the incoming wave amplitude 
~3~ only (Eq. 40). 

B2. Condition B2 is obtained by the NSCBC formula- 
tion with cr = 0. It corresponds to perfectly non-reflecting 
boundary conditions (Section 3.2). No extrapolation is 
involved at any stage. 

B3. Formulation B3 is the corrected non-reflecting 
NSCBC formulation with c = 0.25 (Section 3.2). 

B4. Condition B4 corresponds to a reflecting outlet 
maintained at a constant static pressurep, and treated with 
a NSCBC procedure described in Section 3.3. 

Conditions B2 to B4 are all obtained by NSCBC. Condi- 
tion Bl may be viewed as the prototype of a method which 
has been used by many other authors to treat subsonic out- 
flow boundaries. Grinstein et al. [26] use zeroth- and lirst- 
order extrapolations respectively for density and velocity 
and apply a relaxation procedure for the pressure which is 
similar to condition Bl. First-order extrapolations for the 
density and the velocity with fixed pressure are used by Yee 
[17]. Jameson and Baker [27] extrapolate tangential 
velocity and entropy and obtain the longitudinal velocity 
and the pressure through Riemann invariants. All these 
methods use extrapolation for two or more variables at the 
outlet. Although condition Bl was apparently designed to 
compute steady state flows, it appears that it has been used 
in many unsteady cases because of its simplicity. As 
suggested by one of the reviewers, more recent methods may 
have been used to evaluate the performances of the NSCBC 
technique. However, condition Bl is simple, well-known, 
and widely used. It is used here only to provide a reference 
to which the NSCBC may be compared. We reckon that 
other recent techniques may also provide excellent results 
and should be compared to the NSCBC method. This has 
been left for further studies. 

The parameters for the computation are the following 
(velocities are normalized by the sound speed c and lengths 
by the half width of the duct I): 

u,/c = 0.9, U,/c = 0.81, Re = UZ lf v = 2000, 

8/l = 0.025, L/l= 1. 

The maximum Mach number of this flow is: .& = 
U,/c = 0.9. A coarse computation grid (41 by 41) is used to 
allow many test runs. The grid resolution does not change 
the intrinsic performance of the boundary conditions. 

Figures 3 to 6 display the time variations of the inlet and 
outlet flow rates (obtained by simple integration along x2 of 
the axial flow rate m, at the inlet and outlet sections). The 
flow rates are normalized by the initial inlet density, the 
sound speed, and the duct half width. A reduced time of 50 
allows more than 40 travels at the mean convection speed 
( U1 + UJ2c = 0.85 for a particle between the inlet and the 
outlet of the computation domain and is considered long 
enough for the flow to reach steady state. 

Figure 3 shows results obtained using boundary condi- 
tions Bl. The coefficient 6’ is equal to 0.58 as suggested by 
Rudy and Strikwerda [ 141. This condition allows waves to 
be transmitted at the outlet and seems to work reasonably 
well until a reduced time of 30. If the computation is con- 
tinued, no steady state is obtained. The inlet and outlet flow 
rates oscillate. The amplitude of these oscillations is a func- 
tion of the initial condition and of the waves generated at 
the beginning of the computation. It is interesting to note 
that Rudy and Strikwerda did not encounter such problems 
when they used this formulation to compute a boundary 
layer over a flat plate [lS]. This might be due to the fact 
that these authors were using a MacCormack scheme which 
introduces artificial dissipation and allows the code to damp 
the oscillations appearing on Fig. 3. When a non-dissipative 
code such as the present one is used, the errors due to the 
extrapolation procedure at the outlet boundary are never 
damped. We will come back to this problem in Section 5. 

- I tntet --____ : out/et 

0 25 Reduced t/me (c t / LI ! 

FIG. 3. Time variations of the inlet and outlet flow rates for a non- 
reacting ducted shear layer. Boundary conditions Bl (reference method 
with u’ = 0.58). 
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‘6 25 Reduced t/me (c t / L) 50 

FIG. 4. Time variations of the inlet and outlet flow rates for a non- 
reacting ducted shear layer. Boundary conditions B2 (NSCBC perfectly 
non-reflecting method). 

Figure 4 presents the results obtained with the perfectly 
non-reflecting condition B2. In this case, waves are 
eliminated rapidly (Fig. 4) but the solution does not con- 
verge. Although the pressure and temperature fields are 
smooth and correspond to reasonable results, the mean 
pressure in the domain keeps decreasing linearly. The inlet 
and outlet flow rates which are directly functions of the 
mean pressure decrease, too, and no steady state can be 
reached. The Navier-Stokes equations with perfectly non- 
reflecting conditions appear to be ill-posed in this case. 

Figure 5 displays the results corresponding to the 
corrected non-reflecting condition B3 with a parameter 
cr =0.25. In this case, waves are eliminated and the 
solution converges to a steady state after a reduced time 
(et/l) = 25. The mean pressure reaches a constant value 
and the inlet and outlet flow rates become equal. 

The influence of the constant (T is weak. We have used 
r~ = 0.25 in most NSCBC tests. Values of this parameter 
equal to 0.1, 0.25, and 0.4 were tested: 0 = 0.1 produced a 
drifting solution similar to the one obtained for 0 = 0 
(Fig. 4) while the two other choices yielded satisfactory and 
almost identical results. Increasing CJ beyond certain limits 
(here (T N 0.7) leads to large flow oscillations. Note that the 
optimum value of 0 is close to the optimal value of 0’ 

i;k 1 
b is 

* 
Reduced r/me (c t / L) 50 

FIG. 5. Time variations of the inlet and outlet flow rates for a 
non-reacting ducted shear layer. Boundary conditions B3 (NSCBC non- 
reflecting method with e = 0.25). 

* 
a 25 Reduced t/me c t I L 50 

FIG. 6. Time variations of the inlet and outlet flow rates for a non- 
reacting ducted shear layer. Boundary conditions B4 (NSCBC reflecting 
method with a constant outlet pressure). 

(Eq. 42) derived analytically by Rudy and Strikwerda [ 141. 
Although 0 = 0.25 provided good results for all the tests 
described in Poinsot and Lele [38], (r might have to be 
adjusted for other specific configurations or other numerical 
methods. 

Finally, the behavior of the solution for a reflecting outlet 
(condition B4) is illustrated on Fig. 6. In this case, no steady 
state is reached because the first longitudinal acoustic mode 
of the system cannot leave the domain. This mode is 
damped only by viscous dissipation and would still be 
present after a longer time. Its period t, can be easily 
evaluated using the duct length L/l = 1 and the mean Mach 
number & = 0.85 by: 

(ct,/L) = & ‘v 14. (43) 

Figures 3 to 6 show that the existence of a steady state 
solution is a strong function of the boundary conditions 
used for the outlet section. Although the oscillation dis- 
played in Fig. 3 for the reference method or the drift in the 
mean values encountered for the perfectly non-reflecting 
NSCBC method in Fig. 4 are small, these effects are a 
clear manifestation of the inadequacy of these treatments. 
Furthermore, even a correct treatment of the outflow condi- 
tion like the case of condition B4 in Fig. 6 may not lead to 
a steady state if reflections are allowed on the boundary. 
Although reflections may be of interest in certain cases, they 
create an additional coupling between acoustic waves and 
the hydrodynamic field. Suppressing this coupling in direct 
simulations is clearly useful in many cases and this may be 
achieved by using the non-reflecting NSCBC method B3. 

5. APPLICATIONS TO UNSTEADY FLOWS 

We have demonstrated the ability of the NSCBC proce- 
dure to perform steady state computations. The present 
example is devoted to truly unsteady flows. The goal here 
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is to characterize the performance of outlet boundary 
treatments for time-dependent flows. 

Let us first describe important results on boundary condi- 
tions for unsteady flows which have been obtained by 
Vichnevetsky and Bowles [33] in the case of the advection 
equation: 

(44) 

In this situation, when an unsteady perturbation reaches a 
boundary (Fig. 7a), two types of waves are present near the 
boundary: physical waves called “p” waves by Vichnevetsky 
[3 1 ] and numerical waves called “q” waves. The physical 
waves have long wavelengths and correspond to the 
incident perturbation crossing the boundary. They are the 
physically meaningful part of the solution. The numerical 
waves have short wavelengths (smaller than four times the 
mesh size for a centered second-order scheme [ 333 ) and are 
spurious waves generated by the discrete treatment of the 
boundary conditions. Once “q” waves are generated, their 
behavior depends on their group velocity ug; ug is a function 
of the scheme spatial differencing method. It is proportional 
to U and may be conveniently characterized by k, = u,/U. 
The ratio k, is generally negative so that “q” waves travel 
upstream and are called reflected numerical waves. For 
classical Pade schemes [33], (k,( increases with the scheme 

incident physical wave 

1 Incident Dhvsic8l w8ve htach=u/ccl 

kpeed = u ; C.-amplitude 
I 

= Ah 

b 

Reflected numerical wave 
I I 
Speed = ug c 0 , amplitude = A, 

FIG. 7. Numerical and physical reflected waves at an outlet boundary: 
(a) the advection equation; (b) the Euler equations. 

order. It also increases with the oscillation frequency and 
reaches a maximum for “saw-tooth” oscillations which have 
a wavelength equal to 2 dx, . Second-order central differen- 
ces will lead to a maximum group velocity U, given by k, = 
u,/U= - 1 [33]. The classical fourth-order Pade scheme 
leads to k, = - 3 while the sixth-order Pade scheme used in 
this paper leads to k, = - 1313. When “q” waves reach 
another boundary (an inlet boundary in the case of Fig. 7a, 
for example), they are reflected in the form of a physical 
wave which is convected downstream again (Vichnevetsky 
and Pariser [30]). As a result, “q” waves create a feedback 
between inlet and outlet which is entirely numerical. 

Although the results of Vichnevetsky and Bowles [33] 
have been obtained for the advection equation, they can 
be extended to the linearized Euler equations (acoustic 
theory). There is, however, an additional complexity for 
Euler equations: acoustic waves can be reflected by 
boundaries into physical waves. In a subsonic flow, an 
acoustic wave propagating at the speed u + c and reaching 
a reflecting outlet boundary (where the outlet pressure is 
imposed, for example) will generate two reflected waves 
(Fig. 7b): the first will be a physical wave of type “p” 
propagating upstream at the speed u-c. This wave is the 
physically meaningful part of the reflected wave. A “q” wave 
will also be reflected and propagate upstream at the speed 
ug = k,(u + c). In a supersonic flow, no reflected “p” wave 
will be created, but the “q” wave will still be generated. It 
will travel upstream at ug, reach the inlet of the computa- 
tional domain, and induce non-physical perturbations. 
Therefore using supersonic outlets [6, 71 cannot be viewed 
as a general simple solution to treat outflow boundary 
conditions; physical “p” waves do not travel upstream in a 
supersonic flow but numerical “q” waves do. 

Now, the strength of this numerical feedback is deter- 
mined by the amplitude of the reflected numerical “q” wave. 
This amplitude is mainly fixed by the quality of the outflow 
boundary condition treatment. (Approximate treatments of 
boundary conditions lead to large numerical reflected 
waves.) Note that two reflection coefficients must be used to 
characterize a given boundary condition treatment: the 
reflection coefficient of physical waves A,/A , and the reflec- 
tion coefficient of numerical waves A,,/A 1 (A, is the 
amplitude of the incident physical wave). In all cases, an 
adequate boundary condition treatment requires the 
amplitude of the numerical reflected waves to be small 
Ay/A, 4 1. An adequate non-reflecting boundary condition 
treatment also requires small physical reflected waves 
(APIA 14 1). 

The quality of a non-reflecting boundary condition treat- 
ment may be studied by considering simple waves leaving 
the computation domain through an outlet boundary. The 
transmission of one-dimensional acoustic waves through 
a non-reflecting boundary is a well-known test and the 
NSCBC method allows complete transmission of incident 
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acoustic waves with very small levels of physical and 
numerical reflections (Poinsot and Lele [38]). On a grid 
using 121 points, typical reflection coefficients for one- 
dimensional Gaussian waves with a 15 points half-width are 
A,,A, N 10e4 and A,/A, < 1O-6 (these values correspond 
to small amplitude acoustic waves reaching the boundary at 
normal incidence). We have chosen to present here a two- 
dimensional case which is more typical of direct simulations 
of turbulent flows: a vortex propagating through a non- 
reflecting boundary. 

The configuration corresponds to a vortex superimposed 
on a plug flow (velocity u,,) and convected downstream 
(Fig. 8). The mean flow is supersonic (uO/c = 1.1). Super- 
sonic mean flow was chosen to show that the numerical 
coupling described in Fig. 7 can occur in supersonic cases. 
(The case of a subsonic mean flow is presented in Poinsot 
and Lele [38] and leads to similar results.) The lateral 
boundaries are non-reflecting. The velocity field of the 
vortex is initialized at t = 0 using the stream function $ 
for an incompressible non-viscous vortex in cylindrical 
coordinates (the coordinate origin is located on the vortex 
center): 

/ !!L\ 

(::)=(;)+l,P( ;; )> 
\-GJ (45) 

+=Cexp( -y). 

C determines the vortex strength. R,. is the vortex radius. 
This vortex has a central core of vorticity with the same sign 
as C surrounded by a region of vorticity of the opposite sign. 
This structure is useful for numerical simulations because 
the total circulation is zero. No correction is required 
initially for the boundary values (Rutland and Ferziger 
L-251). 

uniform 
supersonic Inlet 
flow at spwd u. 

Non r.sfktlng 
laterat waJ/s 

I \ 

Non reflecting 
outlet section 

Vorlex convected 

FIG. 8. Configuration for two-dimensional tests of non-reflecting out- 
let boundary conditions: vortex propagating through a supersonic outlet. 

The pressure field is initialized as: 

p-py=P$exp( -$$). 

The mean flow characteristics used for this case are 

Jzz=uu,/c= 1.1, Re = uOl/v = 10,000, 

L/l = 2. 

(46) 

(47) 

The vortex is initially located in the center of the domain 
(x, = I, x2 = 0) and is defined by 

RJI = 0.15, C/( cl) = - 0.0005. (48) 

Inlet and lateral boundaries were treated using the 
perfectly non-reflecting NSCBC procedure. Two sets of 
boundary conditions were used for the outlet: 

Bl. Reference method with c’= 0.58 (Rudy and 
Strikwerda [ 14, 151). 

B3. Non-reflecting NSCBC conditions with d = 0.25. 

It is necessary to recall here that condition Bl is a crude 
method based on extrapolations near boundaries. There- 
fore, it is expected to perform poorly in transient situations. 
It is shown here only because of its simplicity and because 
it is still used by some authors. As such, it provides a correct 
reference method. Figure 9a shows the initial vorticity and 
longitudinal velocity fields computed using conditions Bl. 
(The vorticity is normalized by c/l.) Dashed lines 
correspond to negative values of the isolines while solid lines 
indicate positive values. The longitudinal velocity u1 is 
plotted as (u, - u,)/u, so that dashed lines correspond to 
flow locally slower than the mean speed u0 while solid lines 
reveal flow faster than uO. In Fig. 9, the vortex is turning 
counterclockwise. The central core of negative vorticity 
(Fig. 9a) is surrounded by a ring of positive vorticity. This 
structure is characteristic of the stream function defined by 
Eq. (45). The vortex is convected downstream at the mean 
flow speed uO/c = 1.1. The maximum speed induced initially 
by the vortex is 0.0018~~. 

After a reduced time (et/r) N 1, the vortex leaves the com- 
putation domain (Fig. 9b). Condition Bl does not allow the 
vortex to leave the domain without creating instability. The 
initial structure of the vorticity field is modified. A careful 
examination of the vorticity profiles indicates that the 
vorticity is not continuous at the outlet. The longitudinal 
velocity contour also exhibits numerical instabilities (“q” 
waves) which are characteristic of an incompatibility 
between the vertical flow and the boundary conditions 
treatment. The second effect of these instabilities is similar 
to the one presented in Fig. 7: the numerical waves 
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v I 
FIG. 9. Vorticity and longitudinal velocity fields at three instants 

(cr/l) = 0, 1, and 2 for a vortex leaving the computation domain. Boundary 
conditions Bl (reference method with (r’ = 0.58). 

propagate upstream at high speed, are reflected on the 
upstream section, and induce inlet perturbations (Fig. 9b) 
and, later, the formation of a new vortex at the inlet 
(Fig. SC). At (ct//) = 2, this new structure is near the center 
of the computation domain and convected downstream. It 
is turning clockwise and its maximum vorticity is around 
0.15 times the initial maximum vorticity in Fig. 9a. 
Although the flow is supersonic, condition Bl creates a 
numerical feedback between inlet and outlet. This makes the 
method unacceptable for direct simulation. 

Figure 10 displays results obtained with the non- 
reflecting NSCBC procedure B3. The initial condition 
(Fig. 10a) is the same as in Fig. 9a. When the vortex leaves 
the domain at a reduced time (cl/l) = 1, the vorticity field is 
preserved (Fig. lob) and the longitudinal velocity field is 
smooth. The amplitude of the reflected numerical waves is 
low and no noticeable perturbation appears on the inlet 
section. At later times ((et/Z) = 2), the original vortex has 
disappeared and the only perturbation generated at the inlet 
corresponds to a vortex with a maximum vorticity which is 
1O-4 times the initial maximum vorticity. 

It is worth indicating that the perfectly non-reflecting 
boundary conditions B2 (0 = 0) produce exactly the same 

results as the B3 procedure: the vortex leaves the domain 
smoothly and there is no drift of the mean values afterwards. 
The perfectly non-reflecting boundary conditions B2 of the 
NSCBC method lead to well-posed problems in one-dimen- 
sional situations (Poinsot and Lele [38]) and also in two- 
dimensional cases where the mean flow does not exhibit 
transverse gradients near the boundary. The latter flows are, 
in fact, almost one-dimensional even if their perturbations 
are two-dimensional. 

Finally, Fig. 11 displays the time variations of the maxi- 
mum vorticity intensity and of the total absolute vorticity 
for the two boundary conditions Bl and B3. In both cases 
the maximum vorticity decreases slowly at first because of 
viscous effects between reduced times 0 and 1 and more 
rapidly afterwards when the vortex leaves the domain. The 
maximum and the total vorticity go exactly to zero for the 
NSCBC calculation after the vortex has left the domain 
(Fig. 1 1 ), but not for the reference method. Furthermore, 
condition Bl does not allow the vorticity to decrease 
monotonically (Fig. 1 la). During the convection of the 
structure through the boundary, the maximum vorticity is 
increased which is a non-physical result. On the contrary, 
condition B3 gives a monotonic decrease of the maximum 

h&X: 
1.88-3 

FIG. 10. Vorticity and longitudinal velocity fields at three instants 
(cr/l) = 0, 1, and 2 for a vortex leaving the computation domain. Boundary 
conditions B3 (NSCBC non-reflecting method with IJ = 0.25). 
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FIG. 11. Time variations of maximum vorticity (a) and total absolute 
vorticity (b) for a vortex leaving the computation domain. Comparison 
between the reference method Bl (thin line) and the NSCBC method B3 
(thick line). 

vorticity. (The two-step variation of the maximum vorticity 
for boundary conditions B3 corresponds to the passage of 
the central core followed by the ring of vorticity of opposite 
sign. ) 

This last test confirms the importance of the downstream 
boundary condition on the global result. Let us note that 
the mechanism evidenced here has no relation to the 
compressible character of the flow. Similar results are 
obtained by Vichnevestky and Pariser [30] for the simple 
advection equation where no physical information can 
travel upstream and by Buell and Huerre [24] for an 
incompressible flow (although Buell’s incompressible 
formulation introduces additional complexity through the 
implicit determination of pressure). It is purely numerical 
and entirely a function of the boundary condition treatment. 

6. APPLICATIONS TO LOW REYNOLDS NUMBER 
FLOWS: THE POISEUILLE FLOW 

The last example concerns a very low Reynolds number where u, is the maximum velocity on the axis: U, = 
flow with isothermal no-slip walls: the Poiseuille flow. This - ( i/2p)(aff==yX,) 12. 

is a difficult test for the NSCBC method because we do not 
expect the hyperbolic part of the Navier-Stokes equations 
to play an important role here. 

The geometry corresponds to a two-dimensional domain 
of half-width I and length L/Z= 10. The inflow conditions 
are 

u,(O, x2, t) = uo [cos (;$1’, 
u,(O, x2, t) = 0, (49) 

WA x2, f) = To, 

where u. is the inlet maximum speed. The Reynolds number 
is Re = uol/v = 15. The Mach number is uo/c = 0.1. The total 
volumetric inlet flow rate ljZin,et is imposed: violet = u,l. 

The lateral boundary conditions (x2 = k 1) correspond to 
constant temperature (To) no-slip walls. Non-reflecting 
boundary conditions are imposed at the duct outlet 
(x1 = L). 

Inlet conditions (49) essentially impose the total 
volumetric flow rate. If we suppose that the density remains 
approximately constant along the duct (p N po), we can 
derive an analytic form of the solution similar to the incom- 
pressible solution derived by Schlichting [35]: downstream 
evolution should bring the flow to the Poiseuille established 
regime, where the pressure gradient @/8x, is (p. 84 in 
[I353 ): 

ap exact 
_ 1 5v POhlet 

----= 
?q-= . 1’ 

_ 1,5 Re-l PO”Z 

I ’ 
(50) 

This solution is valid if the total pressure loss between the 
duct inlet and the duct outlet is small compared to the mean 
pressure, i.e., if 

L/IRee’A2!2 1. 

This parameter is 0.007 for this computation and the incom- 
pressible solution can be considered as an exact solution. 

The exact velocity field is then given by 

1 apexact u,(x,, x*, t)= --- 
2~ ax, 

(Z2- x:, 

(independent of xi and t). (51) 

The exact temperature field can also be obtained, 

T(x,,x,,t)-To= -F ;+;(x~/~)‘-(x~//)~ 
> 

, (52) 
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Note that the temperature in the tube is lower than the 
wall temperature because pressure decreases with x1. This 
result is different from the one derived by Schlichting (p. 280 
in [35]) who neglected pressure variations in the energy 
equation. 

The computation was performed using three conditions 
for the outlet: 

(1) the reference method Bl with 0’ = 0.58, 
(2) the non-reflecting NSCBC formulation B3 with 

CJ = 0.25 (Section 3.2), 
(3) the formulation B4 with a constant outlet pressure 

pee (Section 3.3). This case generates reflection on the outlet. 

In all cases the lateral isothermal no-slip walls were com- 
puted using the NSCBC procedure described in Section 3.5. 
For the Poiseuille flow, an exact value may be found for the 
incoming wave at the outlet: Zyt = ~,(~p”““‘/&~,). This 
value was used for the NSCBC method B3 as indicated in 
Section 3.2. 

All methods converge to steady state. Figure 12 gives the 
time variations of the inlet and outlet flow rates for the 

- : lrd.9f ------ : Outlet 
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ct 
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FIG. 12. Time variations of the inlet and outlet flow rates for a 
Poiseuille flow computation with three different boundary conditions: 
(a) reference method Bl; (b) non-reflecting NSCBC method B3; and 
(c) reflecting NSCBC method B4 (constant outlet pressure). 

reference method (Fig. 12a) the non-reflecting NSCBC case 
(Fig. 12b), and the reflecting NSCBC case (Fig. 12~). For 
very viscous flows, the acoustic modes generated by a 
downstream reflecting end are damped rapidly and Fig. 12c 
shows that a steady state is reached with formulation B4 
after a reduced time of 160. 

To gain more insight into these results, it is instructive to 
consider the two-dimensional structure of the flow. This is 
done for the reference method on Fig. 13 and for the 
NSCBC methods B3 and B4 on Figs. 14 and 15. The fields 
plotted are: (a) the pressure difference between the reference 
at infinity and a given point in the flow (lOO(p - p,)/pco); 
(b) the longitudinal velocity (u,/uO); and (c) the tem- 
perature difference between the inlet section (T,,) and a 
given point in the flow (lOO( T- T,,)/T,,). The x1 coor- 
dinate has been dilated by a factor of three. 

The reference method Bl clearly does not correctly 
handle the outlet conditions (Fig. 13). Strong pressure and 
temperature gradients are produced near the outflow and 
the velocity profile is incorrect (Fig. 13b). (In fact, our 
observations indicate that this method has a tendency to 
keep outlet profiles at their initial values!) The boundary 
layer behavior exhibited in the temperature contours near 
the outlet section shows that this set of boundary conditions 
makes the problem ill-posed. 

FIG. 13. Pressure, velocity, and temperature fields at steady state for 
the Poiseuille flow. Boundary conditions Bl (reference method with 
u’ = 0.58). 



The reflecting formulation B4 also gives accurate results. 
There is no drift of the mean values after the acoustic waves 
are damped and the velocity profiles are correct (Fig. 15b). 
However, a small perturbation in the temperature profiles 
near the outlet is observed (Fig. 1%). This behavior might 

10 I be due to the corner treatment as indicated in Section 2.6 for 
which this configuration creates compatibility problems. 
Another explanation is the one proposed for the non- 
reacting shear layer in Section 4: imposing a constant 
pressure at the outlet creates outlet perturbations and wave 
reflections. For the ideal Poiseuille flow in a real “infinite” 
duct, no reflections exist at any location. In this aspect, 
the non-reflecting case B3 (Fig. 14) provides a better 

‘0 I 
approximation to the “infinite” duct. 

- 
x7 

The comparison between the exact axial velocity and 
temperature profiles (Eqs. (51) and (52)) and the computed 
values at steady state are given in Fig. 16 for the NSCBC 

FIG. 14. Pressure, velocity, and temperature fields at steady state for 
the Poiseuille flow. Boundary conditions B3 (NSCBC non-reflecting a 

1. 
method with o = 0.25). 

__ ._ 
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The non-reflecting NSCBC method B3 provides accurate 
results. The pressure fields (Fig. 14a) show a constant 
pressure gradient in most of the duct. This gradient is 
0.998( +exact/a~ 1 ). No boundary layer behavior is observed 
in the longitudinal velocity profiles (Fig. 14b) or in the 
temperature field (Fig. 14~). 

b A 
0. ,: -... 

- ~0.66 
- = 1. (outlet) 

FIG. 15. Pressure, velocity, and temperature fields at steady state for FIG. 16. Comparison between numerical results (using NSCBC 
the Poiseuille flow. Boundary conditions B4 (NSCBC reflecting method method B3) and exact solution for a Poiseuille flow computation: (a) 

. 
with a constant outlet pressure). velocity protiles; (b) temperature profiles. 
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method B3. Transverse profiles are plotted at four con- 
secutive locations in the duct (xi/L = 0, 0.33, 0.66, 1). The 
velocity profiles converge very rapidly towards the exact 
solution (Fig. 16a). The agreement is also quite good for the 
temperature profiles (Fig. 16b), although the duct seems 
slightly too short to reach the thermally established regime. 

7. CONCLUSIONS 

Two types of conditions have to be provided to solve 
numerically the fully compressible Euler or Navier-Stokes 
equations: 

- physical conditions which are the boundary condi- 
tions dictated by the original non-discretized problem, 

- soft conditions which are numerical conditions 
required by the discrete method to complete the set of physi- 
cal conditions. 

A method to specify both physical and soft boundary 
conditions for Euler and for Navier-Stokes equations 
has been presented. This method called NSCBC (for 
Navier-Stokes characteristic boundary conditions) has the 
following characteristics: 

- Physical conditions are specified according to well- 
posedness studies of Navier-Stokes equations [12, 28, 29, 
321. Viscous conditions for Navier-Stokes are added to the 
inviscid Euler equations to obtain the right number of 
boundary conditions for Navier-Stokes (Strikwerda [32]). 
The viscous conditions are used only to compute the viscous 
terms in the conservation equations at the boundary and, 
therefore, are not strictly enforced. 

- The method relaxes smoothly to Euler boundary con- 
ditions when the viscosity goes to zero. Special features of 
the method include corner and edges treatments and a 
special estimate of the amplitude variations of incoming 
waves to construct well-posed non-reflecting conditions. 

- Soft conditions are constructed without any extrapola- 
tion. The NSCBC method is based on a local inviscid one- 
dimensional analysis of the waves crossing the boundary. 
The amplitude variations of the waves entering the domain 
are estimated from an analysis of the local one-dimensional 
inviscid equations. These amplitude variations are then used 
in a reduced set of conservation equations to determine 
boundary variables which were not specified by the physical 
boundary conditions. 

Implementation examples of the NSCBC method have 
been given for inlets, slip walls, no-slip walls, reflecting and 
non-reflecting outlets. The method is valid for subsonic and 
supersonic flows. 

Comparison of the NSCBC approach with classical 
methods using extrapolation and simplified Riemann 

invariants shows the higher precision and stability of the 
NSCBC method. This is especially true when direct simula- 
tion algorithms are used. These algorithms do not introduce 
numerical dissipation and do not damp errors generated at 
the boundaries. Therefore, specifying approximate condi- 
tions such as extrapolated values at the boundaries 
will usually lead to numerical instabilities or complete 
divergence of the calculation. 

Rudy and Strikwerda’s “non-reflecting” boundary condi- 
tions [14] were used as a reference method to test the 
NSCBC method for outlets: this technique uses extrapola- 
tion for the velocities and the density and a non-reflecting 
condition for the last variable (pressure or temperature). 

Test cases described in this paper include a ducted shear 
layer, vortices propagating through boundaries, and 
Poiseuille flow. Additional tests for free shear layers, 
unsteady and steady reacting flows and acoustic waves 
propagating through boundaries may be found in Poinsot 
and Lele [38] and are summarized in Table VI: 

l The first tests were performed for steady flows: for non- 
reacting or reacting shear layers, the NSCBC procedure 
allows faster convergence than the reference method. It is 
also more stable. The reference method induces strong 
gradients near the outlet boundary while all profiles exhibit 
a smooth behavior when the NSCBC method is applied. 

l The use of precise boundary conditions and non-dis- 
sipative algorithms has some other consequences: for high 
Reynolds number flows, no steady state can be obtained, for 
example, if reflecting conditions are used at the outlet sec- 
tion. Acoustic modes remain trapped in the computation 
domain and never get damped because the dissipation 
(physical or numerical) is low. For reacting flows, reflec- 
tions on the outlet boundary have strong effects on the 
flame front movements. Small levels of reflection on the 
downstream boundary can generate large flame front 
movements (Poinsot and Lele [38]) and the present test 
show the necessity of accurately controlling the behavior of 
the boundary to ensure correct results. 

l The construction of non-reflecting boundary condi- 
tions is a topic which goes beyond the objectives of the 
NSCBC method. The difficulty here is due to the lack of 
physical information which is available to compute the solu- 
tion between the outlet boundary and infinity. However, 
building perfectly non-reflecting boundary conditions is 
possible with the NSCBC approach and gives excellent 
results for one-dimensional flows or for two-dimensional 
flows which do not exhibit strong transverse gradients near 
the boundary. For more complex cases like shear or 
boundary layers, this perfectly non-reflecting approach 
leads to ill-posed problems, where the mean values of 
pressure or density drift linearly with time. A simple 
solution using an almost non-reflecting condition has been 
proposed and tested successfully even for very viscous flows. 
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TABLE VI 

Summary of Results for Outlow Boundary Conditions 

Method used 
for boundary -+ 
conditions 

Reference method 
Bl (Rudy and Strikwerda 
Cl411 

NSCBC B2 
perfectly 
non-reflecting 

NSCBC B3 
almost 
non-reflecting 

NSCBC B4 
fixed outlet 
pressure 

Expected 
outlet + 
behavior 

Non-reflecting, 
non-drifting 

Non-reflecting, 
drifting? 

Non-reflecting, 
non-drifting Reflecting 

Non-reacting 
ducted 
shear layer 
(Section 4) 

Non-reacting free 
shear layer 
(Poinsot and Lele 
C381) 

Reacting free 
shear layer 
(Poinsot and Lele 
C38 I) 

Acoustic wave 
propagation 
(Poinsot and Lele 
C38 I) 

Vortex convection 
(Section 5) 

Poiseuille flow 
(Section 6) 

No apparent 
reflections but 
no steady state, 
wiggles near 
outlet section 

No steady state, 
wiggles near 
outlet section 

Steady state, 
strong gradients 
near outlets, 
wiggles in whole field 

Strong numerical 
reflected waves 
inducing false 
inlet perturbations 

Numerical reflections 
on outlet creating 
new unphysical inlet 
perturbations 

Erroneous results 
near outlet, 
wiggles in the 
whole field 

No reflections, 
linear drift of all 
mean variables, 
no steady state, 
no instabilities 

No reflections, 
no drift, 
steady state, 
no instabilities 

Same as above Same as above 

No reflections, 
no steady state, 
mean reaction 
rate goes down 
slowly 

No reflection 
no numerical 
instabilities, 
no drift 

No reflections, 
steady state, 
flame front 
does not move 

Small reflection 
on outlet, 
no numerical 
reflected wave 

No modification of the vorticity field, no mean values 
drift after vortex has left the domain, no wiggles 
and no coupling between boundaries 

Drifting mean 
values, correct 
fields of velocity 
but not 
temperature 

No drift, 
correct fields of 
velocity and 
temperature 

Acoustic waves 
never damped, 
no steady 
state, small 
wiggles 

Acoustic modes 
are slowly 
damped 

Acoustic modes 
are slowly 
damped, flame 
flaps up and 
down 

Total reflection 
on outlet, 
pressure node, 
no wiggles 

No drift, damped 
acoustic mode, 
correct fields of 
velocity and 
temperature 

More sophisticated approaches could also be incorporated 
in the non-reflecting conditions if necessary. Solving a linear 
problem between the outlet and infinity and matching the 
solutions on the boundary might be a complex but powerful 
method to do so (Keller and Givoli [34], Hagstrom and 
Hariharan [ 361). 

l Transient computations have been performed to check 
the performance of the NSCBC conditions in time 
dependent situations. The transmission of an acoustic 
propagating wave through a non-reflecting boundary is 
computed accurately [38]. The convection of a vortex 
through a non-reflecting boundary is also computed 
correctly. More importantly for direct simulation, the 
NSCBC method generates almost no numerical high 
frequency waves which could propagate upstream and 
induce false inlet oscillations. It was shown that the 

reference method creates such numerical errors. Such errors 
cannot be tolerated in direct simulation as they introduce 
artificial coupling between inlet and outlet. This might be 
a severe limitation of formulations for incompressible 
simulations because of the difficulty of building correct non- 
reflecting conditions for these methods (Buell and Huerre 
[24], Gresho and Sani [25]). 

No complete analysis of the well-posedness of the 
NSCBC method was performed. It would be quite 
interesting to check whether NSCBC conditions would 
satisfy the energy criterion derived by Dutt [29] for well- 
posedness. Numerical experiments seem to suggest that this 
is the case. 

This study suggests that a promising and general method 
to specify boundary conditions for Navier-Stokes equations 
might be to directly analyse wave propagations for viscous 
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flows (including diffusion waves) to avoid the use of inviscid 
wave analysis (Liu [37]). For most practical flows, the 
NSCBC approach might remain a good compromise 
between accuracy and complexity. 

Although direct simulation appears to be one of the most 
powerful tools to study turbulence and turbulent combus- 
tion, non-periodic simulations with inflow and outflow con- 
ditions, which are a necessary evolution of these methods, 
require careful attention to the boundary conditions. 
Implementing and testing adequate boundary conditions is 
a mandatory step to perform reliable direct simulations. The 
NSCBC method described in this paper shows one possible 
way to construct accurate boundary conditions. 

APPENDIX: LIST OF SYMBOLS 

Roman Letters 

A, 
A, 
A, 
C 

c 

c,, C” 

d 
E 
h 

kg 

K 
1 
L 
9 

mi 

hinlet 

Jci! 

P 
PCC 
p, 
Re 
4 
s 
t 

T 
TO 
Tin 
to 
ui 

% 

uo 

u 

Wave amplitude 
Physical reflected wave amplitude (“p” waves) 
Numerical reflected wave amplitude (“q” waves) 
Sound speed 
Vortex strength 
Heat capacities 
Vector (function of 9) 
Specific internal energy (Eq. (4)) 
Enthalpy = E + p/p 

Ratio of the numerical wave group velocity to 
the advection velocity 
Coefficient for the incoming wave variations 
Reference length 
Longitudinal length 
Vector containing the wave amplitude varia- 
tions 
Momentum densities 
Volumetric inlet flow rate 
Mach number 
Pressure 
Pressure at infinity 
Prandtl number 
Reynolds number 
Vortex radius 
Entropy 
Time 
Temperature 
Fixed wall temperature 
Inlet temperature 
Acoustic mode period 
Velocity components 
Group velocity of numerical waves 
Constant reference velocity 
Advection velocity 

Greek Letters 

; 
Ratio of heat capacities = C,/C, 
Momentum thickness 
Thermal conductivity 
Characteristic speeds 

COT Maximum vorticity 
vorticity) 

P Dynamic viscosity 

$ 
Kinematic viscosity 
Stream function 

P Density 

(Largest absolute value of 

rr, CJ’ Constants used in K (Eqs. (40) and (42)) 
T Viscous stress tensor 
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